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ABSTRACT 

Criteria for regularity of finite p-groups are derived. In particular, it is proved 

that regularity of a p-group G depends only on the scctions of G of small class. 

In this paper we consider finite p-groups. We recall that such a group, G, is 

regular,  if for any pair of elements a, b ~ G we have 

(R) (ab) v = aVbVu v... u~, u i ~ (a ,  b ) ' .  

The theory of regular p-groups was developed by P. Hall ([2], [3], see also 

[6, III. 10]). Since then, there have not been many additions to this theory. We 

mention the papers ([1"], [8]) dealing with metabelian regular p-groups. 

In this paper we give several criteria for p-groups to be regular. These criteria 

are proved using the concept of a minimal irregular group, i.e., an irregular 

p-group all of whose proper sections are regular. Our main result (Theorem 2) is a 

iong list of properties of minimal irregular groups. The main corollaries of this 

list are the following (G denotes a finite p-group): 

a) There exists an integer k(p) (depending on p only) such that G is regular if  

and only if all its sections of class k(p) at most are regular. 

b) G is regular if all sections of exponent p2 of G x G are regular. 

Here result (a) relies on Kostrikin's solution of the restricted Burnside problem 

for exponent p. 

In Section 2 we construct some examples of minimal irregular groups. 

Notation anti terminology 

A group H is a section of a group G, if H is isomorphic to a factor group of a 

subgroup of G. A section H of G is proper,  if H is not isomorphic to G. A group is 

Received July 29, 1971 

471 



472 A. MANN Israel J. Math., 

n-abelian for an integer n, if (ab) n = a"b n (a, b ~ G). Let G be a finite p-group. 

Then clG denotes the nilpotence class of G, Gn is the n-th term of the descending 

central series of G, Zn(G) is the n-th term of the ascending central series, Z(G) 

= ZI(G), G' = G2 is the derived group, (S )  is the subgroup of G generated by the 

subset S, f~i(G) = <ala", = 1), U,(G) = (a p' ]a ~ G), ~(G) = G' UI(G ) is the 

Frattini subgroup, and M(G) = <u [(au) p = a ", for each a s G), I G[ denotes the 

order of G. 

The author has had the pleasure and benefit of many stimulating conversations 

with Paul Weichsel regarding the topics of this paper. 

1. Definition 

A p-group P is a minimal  irregular group if P is irregular, but all proper 

sections of G are regular. 

We shall use the following well known result [7]. 

KOSTRIKIN'S THEOREM. Among all finite p-groups of exponent p and 2 gener- 

ators, there exists a unique max imal  one, G(p), such that all others are 

epimorphic images of  G(p). 

We let c(p) be the class of G(p), and pn(p) be its order. 

THEOREM 1. Let G be a finite p-group. I f  all sections of G of class at most 

1 + c(p) are regular, then G is regular. 

PROOF. Assume that G is irregular. Then G involves some minimal irregular 

group, P say, and it will suffice to show clP < 1 + c(p). 

All proper subgroups of P are regular. Since regularity is determined by 2- 

generator subgroups, P can be generated by two elements. Moreover, there 

exists a pair of generators a, b for P such that a and b do not satisfy the regularity 

equation (R). Assume that P '  has exponent greater than p. Then u~(P') is a non- 

trivial normal subgroup of P. Let T be a minimal normal subgroup of P such 

that T _ ut(P') .  Then P / T  is regular, so that we have (ab)P= aPbPcPd; where 

c ~ P'  and d ~ T. But then cPd ~ uI(P ')  = Ul((a, b)'), which contradicts the 

choice of a, b. Thus P'  has exponent p. 

Now let x ~ P, u e P'. Then (x, u)  is a proper subgroup of P, therefore regular. 

From the properties of regular groups it follows that (xu) ~ = x p (since u" = 1). 

Thus, u E M(P),  i.e., P'  ~ M(P). But then P is its own centre (mod M(P)). From 

P. Hall's permutability theorem it follows that UI(P) -~ Z(P). ([4]; direct proof: 

let a, b ~P.  Then b-  l aPb = (b - lab )  p = (a • a -  ~ b-  l ab) p = aP). 
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Now P/Z(P) is a 2-generator p-group of exponent p and having 2 generators. 

Therefore, its class is at most c(p), and clP is at most 1 + c(p). 

In general, minimal irregular groups have easily described structure in many 

senses. We collect now what we consider to be the more important properties of 

such groups. 

THEOREM 2. Let P be a minimal irregular group of class c and exponent e. 

Then 

a) P can be generated by two elements. 

b) P '  has exponent p; PIP' is of type (pe-l,p). 

C) Z(P) = ~)I(P) and is cyclic of order p~-l; Z~-I(P) = ~(P). 

d) Pc = Z(P) ~ P '  and is the only minimal normal subgroup of P. 

e) All proper sections of P have class less than c. 

f) P is p2-abelian. 

g) Ire > 2, then for all 1 <- l <_ e, fit(P)consists of all elements of P of order at 

most pZ; ul(p ) consists of all pt powers of elements of P; and PIll(P)~-ul(P).  

h) P × P has an irregular section of exponent p2. 
i) c = < l + c ( p ) ;  [PI=<p~-I+n(P) 

j) P can be generated by two elements, a and b, such that (ab)P = aPb p. 

k) M(P) = P'. 

PROOF. Parts of the theorem have been deduced already in the proof of Theorem 

1. Let T be a minimal normal subgroup of P. Then P[T is regular, and its derived 

group is of exponent p. By (R), PIT  is p-abelian. If  S is another minimal normal 

subgroup, P/S  is also p-abelian, but then P itself is p-abelian and regular. There- 

fore P has a unique minimal normal subgroup. This means that Z(P) is cyclic. 

P can be generated by any two elements a, b that are independent (rood qb(p)). 

In particular, if Z(P) $ ~(P), we can choose a ~ Z(P), but then a and b commute, 

and P is abelian. Thus 

uI(P) _ Z(P) ~ ¢I)(P) = P 'uI(P) ,  Z(P) = U I(P) (P' (~ Z(P)). 

Here P' n Z(P) # 1 is of exponent p and cyclic, therefore of order p, so it is 

the unique minimal normal subgroup of P. In particular, P' C5 Z(P) ~_ uI(P)  and 

Z(P) = UI(P). As a cyclic group generated by elements of order pC-1 and less, 

Z(P) has order pC-1. Next, P/Zc_I(P ) is abelian, so Zc_I(P ) ~_ P',  and since 

Zc_I(P ) ~_ Z(P) = u~(P), we get Zc_~(P) ~_ ~b(P). But if Zc_I(P ) ~ ~b(P), then 
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]P: Zc_I(P ) IN p which implies P = Zc_I(P ) which does not hold. Thus (c) is 

proved. 

Let _P = P/P'.  Then U I ( P ) ~  u I ( P ) / u I ( P ) r i P '  is cyclic of order pC-2. Since 

P is a 2-generator abelian group, it must have a type (pe-1, p). Also, we have 

seen that P '  n Z(P) is the only minimal normal subgroup of P. But Pc ~ 1, and 

Pc -~ Z(P) n P ' ,  so (d) holds. 

Each proper factor subgroup of P is a factor group of P/Pc, and thus has class 

less than c. On the other hand, if H is a maximal subgroup of  P then H _ ~(P) 

= Zc-I(P),  so ~(P)__ Zc_I(H) and ]H: Zc_I(H)] < p which implies that H 

= Zc-I (H)  is of class less than e. 

For  (f), we notice that since P/Pc is p-abelian, we have for any elements 

x, y e P: (xy) p = xPyPz, z ~ Pc. All factors on the right hand side of this equation 

lie in Z(P) so we get 

(xy)  ~2 = (xpypz)p = x.2y~ ~. 

The first part of (i) is just Theorem 1. The second part follows from what has 

been proved there together with Iu l (P) l  = pC-1. 

For  (g), consider first S = ~1 (P mod Pc). Then S ~_P', so S ¢3q~(P) 

= P'(S ~ u,(P))  = P 'n2 (u I (P) )  so I P/S  (3 ~P(P)I = pe-1, while 

I P /S l = I /Pc) l = I  l(P) /Pc ] = 

Let x e S - ¢(P).  Then x p e Pc. Assume x p ¢ 1, then we can find an element y 

such that f~z(UI(P)) = ( y )  and x p = yP. Since y e q~(P), we have (x, y )  ¢ G and 

(x,  y )  is regular, so that (xy-  1)p = 1. Let z = xy -  1. Then z e S - ¢(P).  From 

P'~_ M(P) it follows that ( V ' , z )  has exponent p, and ]P] (P ' , z ) ]=  pC-l, so 

[ S / (P ' ,  z)  [ = p and S = (P ' ,  z, y) .  Let s e S - (P ' ,  z).  Then s = ufi, where 

u e (P ' ,  z )  and i ~ 0(p), so (using y e Z(P)) s p = y'P ¢ 1. Since ~I(P)  --q S, we get 

that f~l(P) = (P ' , z )  has exponent p, and [P/al(P)[ = pe-~ = Iu~(P)[- 

Moreover, z ¢ gP(P) implies that z is not a p-th power in P = PIP'. The last 

group is of  type (pe- l ,p) ,  so P / ~ ( P ) ~ - P / ( z P ' )  is cyclic. 

For  I > 1, if x e P  has order pt then xPE~JI(P), so XPZ-~EVc. Thus f~(P) 

=f~, -a(  P m o d  Pc), so IP/f~,(P)] = ]P/Pc/f~t_I(P/Pc)] = ]U,_I(P/Pc)I 

= IU,-1(P) ~Pc [ = 1/PI Ut-t(P)I  = [U,(P) [. 

Thus, for l > 1, P/u~(P) TM ~t(P), since the last two are cyclic groups of the same 

order. 
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For (h) we may assume e > 2. Let P = ( a , b ) ,  where bP~P ' ,  so b p2 = 1. 

If  x ~ P ,  then x = aibic, where c e P ' ,  so x v = (aZbJ) p. Since P is not p-abelian, 

we must have (a:bJ)V4 a'Vb jp for some pair ( i , j ) ,  and may as well assume 

(a b) r ~ aVb v, By (fl), a has order p~. 

Also 
(ab) p=avbv t ,  t~P~,  t ~  l. 

Let Pi be isomorphic to P (i = 1,2) under an isomorphism sending x ~ P  to 

xi ePi .  Consider in P1 × P2, H = ((al ,  a2) , (b l ,u2)) ,  where u ~P ' .  Then 

: a2u2) (A) ((al, a2)(b~, u2)) l '= (a lb l ,  a2u2) p (a fb f t l ,  ~' p 

= (al,  az)V(bl, Uz)P(tl, 1). 

With P, H is pE-abelian, so h ~ h v2 is an epimorphism from H onto u2(H). 

Therefore, 

102 p2 
~32(H) = ( (a j ,a2)  , (b l ,u2)  ) = ( ( a ( " , a~ ) )  

and (tl,  1) ~ Uz(H). Thus, (A) shows that H/~Sz(H) is not p-abelian. Since H/t32(H) 

with P, has a derived group of exponent p, it is not regular. 

A result of Hobby's [5] implies (j) since minimal irregular groups are certainly 

nearly regular in the sense of [5]. (Hobby also gives an example of a non-regular 

nearly regular group which is not minimal irregular.) 

Lastly for (k) We have already seen in the proof of Theorem 1 that P'~_ M(P) .  

Assume c E M(P)  - P' .  Then c has order p, and c ~ @(P). Let P = (a, b). We may 

assume that a ¢ M(P)@(P), and then P = (a ,  c). In particular, we have b = aicJuz, 

u ~ P' ,  z ~ Z(P).  Let d = cJu ~ M(G). Then 

aPb v = aV(aidz)V = aPaiVz v 

(ab) v = (a i+ l dz)V = a(i+ 1)pzV 

(B) (ab)V = a,b v 

Equation (B) holds if P 4 (a, b), by Eq. (R) and the fact that P '  has exponent p. 

Thus P is p-abelian and regular, a contradiction. 

COROLLARY 1. Let  G be a f inite p-group. I f  all sections of exponent p2 of  

G × G are regular, then G is regular. 

REMAV, K Groups in which all sections of exponent p2 are regular are called 

weakly  regular. (This notion, discussed by P. Hall, was brought to my attention 
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by P. M. Weichsel.) Most of (g) above follows immediately from properties of 

weakly regular groups. 

For e --- 2, (g) does not hold. Any irregular group of order pp+l is minimal 

irregular of exponent p2, in which u~(P) has order p and consists of p-th power 

[6, III.14.14]. One such group is the wreath product of two groups of order p, in 

which ~ I ( P ) =  P and thus ~I(P) contains elements of order p2. Another such 

group was constructed by Blackburn. In it, ~I(P) contains only elements of 

order p, but has index p2 [6, III,10.15]. 

The condition of Corollary 1 is not necessary for G to be regular. Thus, Weichsel 

[8] has constructed regular p-groups of exponent p2, whose direct square is not 

regular. 

Also, there does not hold any result of the form " I f  all sections of exponent at 

most pe (where e = e(p) depends on p only) are regular, then G is regular". This 

we show by constructing, in the next section, a minimal irregular group of ex- 

ponent pC, for each e > 1. 

To conclude this section, we mention one more result, which is, in a sense, a 

generalization of the well-known criterion of P. Hall, " I f  [G/uI(G) I< pP, then 

G is regular". 

COROLLARY 2. Let G be a finite p-group. I f  for each 2-generator subgroup H, 

we have cl H /I21(H ) <= p - 2, then G is regular. 

Indeed, the restriction on the class would hold also for all 2-generator sections 

of G. If  G is irregular, it has a minimal irregular section P, which has two 

generators and satisfies uI(P)  = Z(P) and thus clP _-< p - 1, a contradiction. 

2. We begin by constructing the examples mentioned in the preceding section. 

For each p and each e > 1 we construct a minimal irregular group, which is 

metabelian, has class p and exponent p~. The method is standard. 

Let H be the abelian group ( a l )  x (a2)  x ... ( a t _ l ) ,  where a 1 has order p~ 

and a i has order p (i > 1). Denote ap = a p,-1. Let P be the splitting extension 

H(b) ,  where b P = l  and b- la ib=aiai+l ,  for l < _ i < _ p - 1 .  Then Pk 

= (ak, ak+l,... ,ap), so c l P =  p. Since P has an abelian maximal subgroup, it is 

_ ( a t ) ,  irregular [6, III.10.10]. Now (a v) c Z(P), and I P: ( a t ) !  = PP, so if Z(P) ~ P 

then clp < p. Thus, Z ( P ) =  (a~'> is cyclic, P has the unique minimal normal 

subgroup (av> = Pp, so all proper factor groups of P are regular of class less than 

p. Next ,@(P)= (af,  aa,...,ap-1>, so if K is a maximal subgroup of P, then 

K = (a~, a2, ..., ap_ 1, c), for some c, and if K ~ H, then c must induce on H the 
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same au tomorphism as b i, for some i, so K k = Pk+l and K has class p - 1. Thus P 

is minimal irregular with the required properties. 

For  p = 2, " r egu la r "  is the same as "abe l i an" ,  so the minimal irregular groups  

are just the minimal non-abelian groups, which are well known.  

Let P be a minimal irregular 3-group. Let T = Pc be its minimal normal  sub-  

group. Then P I T  is a 2-generator regular 3-group. Therefore, P ' / T  is cyclic 

[6, III .10.3],  and as it has exponent 3, l e ' /r l  = 3 and P '  is elementary abelian 

o f  order 9. Let K = Cp(P'), then I P :  K I = 3. Since K has ~(P)  = P ' Z ( P )  as a 

central subgroup of  index 3, K is an abelian maximal subgroup of  P. Moreover ,  

we have Irj (P) I - -pe_l ,  so I (P)l = pe and so P has a normal  

cyclic subgroup of  index p2. It  is now routine to describe all minimal irregular 

3-groups. 
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